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This year we are celebrating 100 years of the naming of vitamin D, but the molecule
is, in fact, more than one billion years old [1]. Nutrition Bulletin and Endocrine Connections
are also honoring the centenary of vitamin D’s discovery, but with 21 original publica-
tions and review articles written by experts in the field, Nutrients represents the largest
collection [1–21].

At the beginning of the last century, small molecules were found to cure several
diseases caused by nutritional deficiencies and were, therefore, termed vitamins. These
diseases are xerophthalmia (a clinical spectrum ranging from night blindness to complete
blindness), anemias, and neurological disorders, such as beriberi and scurvy (a disability
affecting the repair of bone, skin, and connective tissue), which can be healed and prevented
using the supplementation of vitamins A, B and C, respectively. Thus, when McCollum
and colleagues demonstrated in 1922 that experimentally induced rickets in rats could be
cured by a factor isolated from cod liver oil, they followed the nomenclature termed and
named it vitamin D [22].

The term “vitamin” implies that these molecules should be regularly supplied as part
of our diet or as pills. However, some vitamins can be endogenously produced by our
bodies, such as vitamin D3 in UV-B-exposed skin [23]. Thus, changes in our lifestyle, such as
spending more time indoors, wearing clothes outdoors, and living at latitudes with seasonal
variations of UV-B intensity, made vitamin D a vitamin. The insufficient production or
supplementation of vitamin D3 causes a low vitamin D status, which is determined by
the serum concentration of the most stable vitamin D3 metabolite, 25-hydroxyvitamin D3
(25(OH)D3). Severe vitamin D deficiency, defined as 25(OH)D3 serum levels below 30 nM
(12 ng/mL), can lead to bone malformations, such as rickets in children and osteomalacia
in adults [24], and at all ages, lead to a malfunctioning immune system [25]. The latter
may increase the risk for severe consequences of infectious diseases, such as COVID-19
(coronavirus disease) [26] or tuberculosis [27], as well as for the onset and progression of
autoimmune diseases, such as type 1 diabetes [28] and multiple sclerosis [29].

Vitamin D and vitamin A differ from other vitamins due to the interesting property
that a few metabolic steps can convert them into nuclear hormones that bind with high
affinity to members of the nuclear receptor superfamily [17]. In the case of vitamin D3,
this is the metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) activating the transcription
factor VDR (vitamin D receptor) [4]. In fact, 1,25(OH)2D3 binds to VDR with a KD of
0.1 nM, which is a significantly higher affinity than that of other nuclear receptors for their
specific ligands. This suggests that the genomic signaling of 1,25(OH)2D3 via VDR is the
predominant means of vitamin D’s mechanism of action [30]. However, there are also
indications for non-genomic vitamin D signaling [19] as well as the biological activity of
vitamin D metabolites other than 1,25(OH)2D3 [16].

In genomic signaling, in all VDR-expressing tissues and cell types, vitamin D controls
the transcription of hundreds of target genes [4]. The Genotype-Tissue Expression (GTEx)
project provides gene expression data from 54 tissues obtained from 948 post-mortem
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donors [31]. The selected tissues are representative of more than 400 tissues and cell types
that constitute our body. At present, the publicly available dataset (https://gtexportal.org)
(accessed on 12 December 2022) is the gold standard for comparing tissue-specific gene
expression. The expression of the VDR gene is highest in the skin, intestines, and colon and
lowest in different regions of the brain (Figure 1). In other tissues, such as the blood and
kidneys, the VDR gene shows intermediate levels of expression. The shortcut interpretation
of this gene expression panel is that vitamin D, via the activation of VDR, primarily impacts
the tissue of its synthesis and that its main action is in the gut, while in the brain, it may have
no direct function. However, one has to distinguish the role of vitamin D as a controller of
calcium transport in the gut [7] from its regulatory function, e.g., in the immune system [3].
Therefore, immune cells may not need as many VDR proteins as intestinal cells.
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Figure 1. Expression of the VDR gene in 54 different human tissues. Normalized RNA sequencing
(RNA-seq) data are shown in TPM (transcripts per million), where all isoforms were collapsed into a
single gene. Box plots display the median as well as 25th and 75th percentiles. Points indicate outliers
that are 1.5 times above or below interquartile range. Data are based on GTEx analysis release V8
(dbGaP Accession phs000424.v8.p2) [31].

From an evolutionary perspective, the calcium-absorbing and bone-remodeling func-
tion of vitamin D (Figure 2) was obtained less than 400 million years ago, when species
left the ocean and needed a stable skeleton [1]. Thus, the best-known role of vitamin
D was not why evolution created vitamin D endocrinology. However, regarding this
physiological function, VDR and its ligand became dominant regulators [7,20]. In this
context, vitamin D learned to control the expression of parathyroid hormone (PTH) and
fibroblast growth factor 23 (FGF23) [11]. The peptide hormones are expressed in the
parathyroid gland and osteocytes, respectively, and up- and down-regulate the production
of 1,25(OH)2D3 (Figure 2).

Most likely, the first function of VDR was the regulation of energy metabolism [32].
Energy is essential for basically all biological processes, but particularly for the function of
innate and adaptive immunity [33]. Vitamin D and its receptor obtained via the control of
immunometabolism a modulatory role on immunity [34] (Figure 2).

Taken together, despite the story of its naming, vitamin D is not only a vitamin that
prevents bone malformations. In contrast, via 1,25(OH)2D3, vitamin D is a direct regulator
of gene expression, resulting in pleiotropic physiological functions.

https://gtexportal.org
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endogenously in UV-B exposed skin. Via its metabolite 1,25(OH)2D3, vitamin D3 activates VDR in
various tissues and cell types, where it regulates the indicated major physiological functions.
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