Shareefa A. AlGhamdi, Ranjini Ghosh Dastidar, Maciej Rybiński, Hadeil M. Alsufiani, Sawsan O. Khoja, Nusaibah N. Enaibsi, Safa F. Saif, Carsten Carlberg
Evaluation of the vitamin D response index in a Saudi cohort
Saudi Pharmaceutical Journal, Volume 32, Issue 8, August 2024, 102137

The concept of the vitamin D response index was developed based on vitamin D intervention studies conducted with Finnish cohorts. In this study, we challenged the concept by performing a single vitamin D3 bolus (80,000 IU) intervention with a cohort of 100 native Saudis. The change of serum levels of the proinflammatory cytokines interleukin 6, interleukin 8 and tumor necrosis factor measured directly before intervention in comparison to samples taken one and thirty days after vitamin D3 supplementation were used as biomarkers for distinguishing low, mid and high responders. Interestingly, we identified 39 % of the study participants as low responders. In contrast, when we used in a subset of 37 study participants whole blood expression changes of seven well-known vitamin D target genes one and thirty days after supplementation as alternative biomarkers, only 9 persons (24 %) were identified as low responders. In conclusion, in Saudi Arabia the rate of low vitamin D responders is equal or even higher than that in Finland. Therefore, similar to Nordic countries also in Saudi Arabia appropriate vitamin D3 supplementation is essential, in order to fulfill the needs of low responders.

View full text
Carsten Carlberg, Eunike Velleuer
Vitamin D and Aging: Central Role of Immunocompetence
Nutrients 2024, 16(3), 398

The pro-hormone vitamin D3 is an important modulator of both innate and adaptive immunity since its biologically active metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates via the transcription factor VDR (vitamin D receptor) the epigenome and transcriptome of human immune cells and controls in this way the expression of hundreds of vitamin D target genes. Since the myeloid linage of hematopoiesis is epigenetically programmed by VDR in concert with the pioneer factors PU.1 (purine-rich box 1) and CEBPα (CCAAT/enhancer binding protein α), monocytes, macrophages, and dendritic cells are the most vitamin D-sensitive immune cell types. The central role of the immune system in various aging-related diseases suggests that immunocompetence describes not only the ability of an individual to resist pathogens and parasites but also to contest non-communicative diseases and the process of aging itself. In this review, we argue that the individual-specific responsiveness to vitamin D relates to a person’s immunocompetence via the epigenetic programming function of VDR and its ligand 1,25(OH)2D3 during hematopoiesis as well as in the periphery. This may provide a mechanism explaining how vitamin D protects against major common diseases and, in parallel, promotes healthy aging.

View full text
​Carsten Carlberg
Chapter 12 - Vitamin D, chromatin, and epigenetics
Feldman and Pike' s Vitamin D, Volume One: Biochemistry, Physiology and Diagnostics, 2023, ISBN 978-0-323-91386-7

Vitamin D deficiency is a worldwide problem linked to numerous diseases affecting men, women, and children of all ages. Enormous progress in the study of vitamin D has been made since the first edition of this highly-acclaimed book was published nearly 20 years ago, and current research continues to draw headlines. Feldman and Pike’s Vitamin D, Fifth Edition continues to build on the successful formula from previous editions, taking the reader from the basic elements of fundamental research to the most sophisticated concepts in therapeutics. The two comprehensive volumes provide investigators, clinicians, and students with a comprehensive, definitive, and up-to-date compendium of the diverse scientific and clinical aspects of vitamin D, where each area is covered by both basic and clinical experts in the field.

Learn more
Eunike Velleuer, Elisa Domínguez-Hüttinger, Alfredo Rodríguez, Leonard A. Harris and Carsten Carlberg
Concepts of multi-level dynamical modelling: understanding mechanisms of squamous cell carcinoma development in Fanconi anemia
Frontiers in Genetics, 02 November 2023, Sec. Nutritional Genomics, Volume 14 - 2023

Fanconi anemia (FA) is a rare disease (incidence of 1:300,000) primarily based on the inheritance of pathogenic variants in genes of the FA/BRCA (breast cancer) pathway. These variants ultimately reduce the functionality of different proteins involved in the repair of DNA interstrand crosslinks and DNA double-strand breaks. At birth, individuals with FA might present with typical malformations, particularly radial axis and renal malformations, as well as other physical abnormalities like skin pigmentation anomalies. During the first decade of life, FA mostly causes bone marrow failure due to reduced capacity and loss of the hematopoietic stem and progenitor cells. This often makes hematopoietic stem cell transplantation necessary, but this therapy increases the already intrinsic risk of developing squamous cell carcinoma (SCC) in early adult age. Due to the underlying genetic defect in FA, classical chemo-radiation-based treatment protocols cannot be applied. Therefore, detecting and treating the multi-step tumorigenesis process of SCC in an early stage, or even its progenitors, is the best option for prolonging the life of adult FA individuals. However, the small number of FA individuals makes classical evidence-based medicine approaches based on results from randomized clinical trials impossible. As an alternative, we introduce here the concept of multi-level dynamical modelling using large, longitudinally collected genome, proteome- and transcriptome-wide data sets from a small number of FA individuals. This mechanistic modelling approach is based on the “hallmarks of cancer in FA”, which we derive from our unique database of the clinical history of over 750 FA individuals. Multi-omic data from healthy and diseased tissue samples of FA individuals are to be used for training constituent models of a multi-level tumorigenesis model, which will then be used to make experimentally testable predictions. In this way, mechanistic models facilitate not only a descriptive but also a functional understanding of SCC in FA. This approach will provide the basis for detecting signatures of SCCs at early stages and their precursors so they can be efficiently treated or even prevented, leading to a better prognosis and quality of life for the FA individual.

View full text